

Technical Considerations from Radiological Perspective

-What Researchers Need to Know-

Ali Guermazi, MD, PhD

Professor of Radiology Director of Quantitative Imaging Center Boston University School of Medicine Boston, MA, USA

Boston University Radiology

Why Do We Need Clinical Trials?

 A researcher tried jalapenos on a stomach ulcer patient, and the ulcer went away.
 The researcher published an article:

"Jalapenos Cure Stomach Ulcers."

• The next patient subjected to the same treatment died. The researcher published a follow-up article:

"More Detailed Study Reveals That Jalapenos Cures 50% of Stomach Ulcers."

Lee JJ. Design and Analysis of Clinical Trials. In: Cancer - Principles and Practice of Oncology Review. Ed R. Govindan; 2005:98-103

Non Hodgkin Lymphomas

- First classification of Hodgkin disease and Non-Hodgkin lymphomas (NHL) in 1982
- Today NHL are potentially curable malignancies
- More than 70% of patients with newly diagnosed NHL respond to combination radiotherapy and/or chemotherapy regimens
- Appropriate selection of treatment after accurate staging and risk stratification, as well as improved therapy, has resulted in a high success rate in NHL management
- Survival rates of lymphoma patients have increased during the last decades

		5-Year Relative Survival by Modeled Period Analysis				10- Year Relative Survival by Modeled Period Analysis					riod Analysis		
		199	1998 2003		Difference	1998		2003	0.4				
Cancer Site	No.*	%	SE	%	SE	(% units)	P for Trend	%	SE	%	SE	(% units)	P for Trend
Oral cavity	35,740	57.2	0.9	61.1	0.9	+3.9	< .01	45.8	1.0	50.1	0.9	+4.3	< .01
Esophagus	14,115	14.6	0.8	18.0	0.9	+3.4	.01	9.7	0.7	12.5	0.8	+2.8	< .01
Stomach	27,127	23.7	0.8	25.5	0.8	+1.8	.16	19.0	0.8	20.6	0.8	+1.6	.15
Colon	120,094	62.5	0.5	66.3	0.5	+3.8	< .0001	57.3	0.6	61.7	0.6	+4.4	< .0001
Rectum	48,274	63.6	0.8	66.8	0.8	+3.2	< .01	55.6	0.9	59.7	0.9	+4.1	<.01
Liver	15,287	8.9	0.6	12.4	0.7	+3.5	< .001	5.9	0.6	8.7	0.7	+2.8	<.001
Pancreas	34,467	5.6	0.3	7.1	0.4	+1.5	< .01	3.8	0.3	4.9	0.3	+1.1	< .01
arynx	13,543	66.3	1.4	61.8	1.5	-4.5	.06	53.7	1.5	49.0	1.6	-4.7	.07
Lung	199,629	16.1	0.2	16.3	0.2	+0.2	.58	10.8	0.2	11.0	0.2	+0.2	.59
škin melanoma	52,630	90.1	0.6	92.6	0.5	+2.5	< .01	87.4	0.8	90.7	0.6	+3.3	< .01
Breast	232,042	87.7	0.3	90.8	0.2	+3.1	< .0001	80.8	0.4	85.5	0.3	+4.7	< .0001
Cervix uteri	17,114	73.1	1.1	71.8	1.1	-1,3	.45	68.2	1.2	67.4	1.2	-0.8	.67
Corpus uteri	43,982	86.2	0.6	84.9	0.6	-1.3	.21	84.1	0.7	82.8	0.8	-1.3	.25
Ovary	25,536	44.5	1.0	43.8	0.9	-0.7	.65	36.4	0.9	34.8	0.9	-1.6	.28
Prostate	255,598	96.3	0.4	99.8	0.1	+3.5	<.0001	88.8	1.7	98.2	0.3	+9.4	< .0001
Testis	10,736	95.0	0.7	97.0	0.5	+2.0	.048	94.2	0.9	96.4	0.6	+2.2	.04
Urinary bladder	62,455	80.4	0.7	80.2	0.7	-0.2	.85	73.0	0.8	73.8	0.8	+0.8	.53
Kidney	33,184	61.1	0.9	66.9	0.8	+5.8	< .0001	52.9	1.0	59.1	0.9	+6.2	< .0001
Brain	20,514	26.3	0.9	29.8	0.9	+3.5	.01	20.7	0.8	23.8	0.8	+3.1	.02
Thyroid	23,990	96.3	0.5	97.0	0.4	+0.7	.29	95.4	0.6	96.2	0.5	+0.8	.31
Hodgkin's disease	10,552	84.4	1.1	84.8	1.1	+0.4	.81	78.4	1.4	79.7	1.3	+1.3	.54
Non-Hodgkin's lymphoma	60,917	58.2	0.7	65.3	0.6	+7.1	<.0001	47.0	0.8	55.0	0.7	+8.0	<.0001
Multiple myeloma	17,977	32.5	1.1	32.5	1.1	±0.0	.99	14.7	0.8	15.0	0.8	+0.3	.77
Leukemias	36,964	41.0	0.8	45.5	0.8	+4.5	< .001	29.4	0.8	34.8	0.8	+5.4	< .0001

Brenner et al. J Clin Oncol 2007; 25:3274-3280

FAB NHL Classification

B-Cell Neoplasms

- B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma
 B-cell prolymphocytic leukemia
- Lymphoplasmacytic lymphoma
- □ Splenic marginal zone B-cell lymphoma (± villous lymphocytes)
- Hairy cell leukemia
- Plasma cell myeloma/plasmacytoma
 Extranodal marginal zone B-cell lymphoma of MALT type
- Mantle cell lymphoma
 Follicular lymphoma
- Nodal marginal zone B-cell lymphoma (± monocytoid B-cells)
- Diffuse large B-cell lymphoma
 Burkitt lymphoma/Burkitt cell leukemia

T and NK-cell Neoplasms

- T-cell prolymphocytic leukemia
 T-cell granular lymphocytic leukemia

- I-cell granular lymphocytic leukemia
 Aggressive NK cell leukemia
 Adult T-cell lymphoma/leukemia (HTLV-I+)
 Extranodal NK/T-cell lymphoma, nasal type
 Enteropathy-type T-cell lymphoma
 Hepatosplenic γδ T-cell lymphoma
 Subcutaneous panniculitis-like T-cell lymphoma
 Mycosis fungoides/Sézary syndrome
 Andette large settle under settle set
- Anaplastic large cell lymphoma, primary cutaneous type
 Peripheral T-cell lymphoma, not otherwise specified (NOS)
 Angioimmunoblastic T-cell lymphoma
- Anaplastic large cell lymphoma, primary systemic

Follicular Lymphoma International Prognostic Index (FLIPI)

- Accurate diagnosis of follicular NHL
 - Based on lymph node/organ biopsy with immunochemistry and t(14;18) translocation
- Five parameters are included in FLIPI
 - Age \geq 60 years
 - Ann Arbor stage III-IV: based on baseline CT neck-chestabdomen-pelvis and bone marrow biopsy/aspiration
 - Hemoglobin level < 120 g/L
 - Serum LDH level > upper limit of normal
 - Number of nodal sites > 4
- Patients' stratification and treatment selection: based on whole body PET-CT, with or without DCE-MRI
- Inclusion cost:~\$50,000

Solal-Celigny P, et al. Blood. 2004 Sep 1;104(5):1258-65

Lessons Learned from NHL

Accurate staging based on imaging

- Follicular lymphoma is an indolent lymphoma
- Burden of disease based on CT measurements
- Monitoring of the disease
 - Hemoglobin and serum LDH levels
 - Response criteria based on CT measurements
- Residual mass activity:
 - In the past, MRI with gadolinium
 - Currently based on whole body PET-CT or PET-MRI
- Sensitivity for detection of residual mass activity on PET: 100%, specificity: 97%

Clinical Trials in OA Today

• Patient inclusion:

- X-ray KLG criteria
- Pain
- No recent trauma
- No history of RA, lupus erythematosus, gout, septic arthritis...
- If MRI is included, patient should not have MRI contraindications
- Cost for inclusion: less than \$1,000

OA Multiple Faces/Phenotypes

"Even after adjustment for sex, age, and BMI, African Americans were less likely than Caucasians to have hand radiographic OA phenotypes, but more likely to have knee radiographic OA phenotypes involving the TF joint."

Nelson AE, et al. Arthritis Rheum 2011;63:3843-52

"Such differences suggest that OA pathogenesis might proceed via unique gender-specific pathways based on underlying hormonal and anatomic differences. As we seek to better understand the metabolic and inflammatory contributions to OA, it is imperative that we continue to carefully evaluate for potential differences by gender."

Huffman KM, Kraus WE. Osteoarthritis Cartilage 2012;20:603-4

"The prevalence of symptomatic knee OA in rural areas of China is much higher than reported from urban regions of China or in the Framingham cohort. The higher representation of bilateral and lateral compartment disease in China suggests a unique phenotype to OA."

Kang X, et al. Arthritis Rheum 2009;61:641-7

Who Is At Risk? Who Will Benefit?

MRI as a screening tool? How do we find fast progressors?

lisk factor	Reference	Adjusted Odds Ratio ⁴ (95% confidence intervals)			
ffusion ¹ (WORMS ≥ 1) ¹	Effusion absence (WORMS score = 0)	1.79 (0.76-4.23)			
/novitis ¹	Synovitis absence	0.68 (0.32-1.45)	Risk factor	Reference	Adjusted Odds
adified WORMS ≥ 1)*	(modified WORMS score = 0)		Effusion (WORMS ≥ 1)	Effusion absence (WORMS score = 0)	3.54 (1.30-9.64)*
leniscal damage ²	No meniscal damage	1.98 (0.76-5.15)	Synovitis	Synovitis absence	0 79 (0 28-2 07)
Meniscal extrusion ²	No meniscal extrusion	3.62 (1.29-10.12)*	(modified WORMS ≥ 1)*	(modified WORMS score = 0 in both synovitis subregions)	
Prevalent cartilage	Absence of cartilage	15.90 (5.08-49.79)*	Prevalent cartilage	No cartilage damage in	4.32 (1.35-13.85)
amage NORMS ≥ 2) ³	(WORMS =0 or 1)		damage (WORMS ≥ 2) ²	subregion (WORMS score = 0 or 1)	
	No BML in subregion (WORMS =0)	4.58 (1.08-19.44)*	BML (WORMS # 1)2	No BML in subregion (WORMS score =0)	1.61 (0.67-3.84)

Who Is At Risk? Who Will Benefit?

• MRI as a screening tool?

MRI Characteristics		Cartilage status	at follow-up		Slow Cartilage Loss	Fast Cartilage Loss
		No cartilage loss N=257 (74.1%)	Slow cartilage loss N=70 (20.2%)	Fast cartilage loss N=20 (5.8%)	Multi-adjusted* OR [95% CI] p-value	Multi adjusted* OR [95% CI] p-value
BML	Grade 0	226 (87.9%)	57 (81.4%)	17 (85%)	1.0 (reference)	1.0 (reference)
	Any grade >1	31 (12.1%)	13 (18.6%)	3 (15%)	1.79 [0.83,3.87] 0.14	1.00 [0.24, 4.10] 0.99
Synovitis/ effusion	Grade 0	106 (41.2%)	24 (34.2%)	3 (15%)	1.0 (reference)	1.0 (reference)
	Any grade >1	151 (58.8%)	46 (65.7%)	17 (85%)	1.37 [0.75, 2.50] 0.30	3.36 [0.91, 12.4] 0.07
Meniscal damage	Grade 0	218 (84.9%)	44 (62.9%)	11 (55%)	1.0 (reference)	1.0 (reference)
	Any grade >1	39 (15.1%)	26 (37.1%)	9 (45%)	3.25 [1.70,6.25] <0.01	3.19 [1.13, 9.03] 0.03
Meniscal extrusion	Grade 0	196 (76.3%)	39 (55.7%)	8 (40%)	1.0 (reference)	1.0 (reference)
	Any grade > 1	61 (23.7%)	31 (44.3%)	12 (60%)	2.02 [1.12, 3.63] 0.02	3.62 [1.34, 9.82] 0.01
High grade	Grade <1	211 (82.1%)	42 (60%)	7 (35%)	1.0 (reference)	1.0 (reference)
lesions	Grade >2	46 (17.9%)	28 (40%)	13 (65%)	3.28 [1.78, 6.03] 0.01	8.99 [3.23, 25.1] <0.01

Risk factors for rapid TF cartilage loss at 30 months

Roemer FW, et al. Radiology 2009;252:772-80

Current Recommendation by OARSI FDA ASC Working Group

- XR is used for:
 - Kellgren Lawrence grade (diagnosis of radiographic OA)
 - Osteophytes
 - JSW (= indirect visualization of cartilage)
- XR-based outcome = FDA approved
 - Currently no FDA-approved MRI-based outcome
- JSW is still a recommended option for trials of structural modification
 - But need to be aware of limitations of XR

Conaghan P et al. Osteroarthritis Cartilage 2011; 19:606-10

Use of X-ray in Clinical Trials – Inclusion and Strtification

- KLG 0
 - No JSN, no osteophyte = supposedly normal knee
- KLG 1
 - No JSN, equivocal tiny osteophyte = almost normal knee
- KLG 2

 No JSN, unequivocal osteophyte = marginal osseous proliferation, without cartilage loss or damage to the joint Still there in no consistency since some researchers include possible joint space narrowing

KLG 0 - MRI Prevalence of OA Features when Any Score > 0

Males (%)	Females (%)
70.5	68.8
34.2	15.9
91.2	90.2
10.0	6.9
50.6	52.3
31.4	27.4
23.5	25.4
34.7	30.6
95.0	95.2
	Males (%) 70.5 34.2 91.2 10.0 50.6 31.4 23.5 34.7 95.0

Guermazi A, et al. Arthritis Rheum 2007;56:S128-129

KLG 0 - MRI Prevalence	of OA Fe	eatures a
Higher Thre	shold	
Unequivocal score	Males (%)	Females (%)
Cartilage \geq 3 in any subregion	43.3	46.3
Menisci \geq 2 in any subregion	13.0	5.5
Osteophytes \geq 2 in any subregion	14.0	10.0
Ligts, any cruciate \geq 1, any coll. \geq 2	3.3	0.8
BM edema \geq 2 in any subregion	15.8	16.5
Bone attrition \geq 2 in any subregion	8.0	8.5
SC cysts \geq 2 in any subregion	3.8	4.3
Effusion ≥ 2	5.1	2.3
% of knees with any unequivocal Ab.	55.8	52.7
Guerm	nazi A, et al. Arthritis R	heum 2007:56:S128-12

KLG 1 - MRI Prevalence of OA Features when Any Score > 0

Any score > 0	Males (%)	Females (%)
Cartilage morphology	71.8	70.3
Menisci (medial & lateral)	36.7	18.1
Osteophytes	91.7	90.3
Ligaments (cruciate & collateral)	11.9	7.7
Bone marrow edema	52.5	52.6
Bone attrition	32.4	27.9
Subchondral cysts	25.2	26.0
Effusion	36.0	32.0
% of knees with any abnormality	95.3	95.5

Guermazi A, et al. Arthritis Rheum 2007;56:S128-129

G 1 - MRI Prevalence Higher Thre	of OA Fe shold	eatures a
Unequivocal score	Males (%)	Females (%)
Cartilage \geq 3 in any subregion	45.6	48.2
Menisci \geq 2 in any subregion	15.2	6.6
Osteophytes \geq 2 in any subregion	14.5	12.1
Ligts, any cruciate ≥ 1 , any coll. ≥ 2	3.4	0.7
BM edema \geq 2 in any subregion	16.9	17.0
Bone attrition \geq 2 in any subregion	8.3	8.5
SC cysts \geq 2 in any subregion	4.1	4.9
Effusion ≥ 2	5.5	2.7
% of knees with any unequivocal Ab.	58.2	54.6

Fluctuation of Knee MRI Features

- Changes in scores of BML's and synovitis were associated with the fluctuation of frequent knee pain and pain severity
 Effect of BML's was greater than that of synovitis
- Improvement of BML's over time was associated with concomitant reduction in pain presence and pain severity
- Worsening of synovitis and effusions over time was associated with an increase in knee pain presence and severity
- "These findings have implications for the development of new treatment and prevention strategies for the management of symptoms of knee OA."
- No x-ray feature fluctuation. X-ray is "ONE WAY ROAD" to an increase in KLG

Zhang Y, et al. Arthritis Rheum 2011;63:691-699

- Sensitivity to change?
 - None = "too slow" in longitudinal studies

- Sensitivity to change?
 None = "too slow" in longitudinal studies
- Specificity?

- Why we perform x-ray?
 OP and JSN (indirect visualization of cartilage)
- Sensitivity to change?
 - None = "too slow" in longitudinal studies
- Specificity?
 - None = meniscal subluxation can mimic cartilage loss

- Why we perform x-ray?
 OP and JSN (indirect visualization of cartilage)
- Sensitivity to change?
 None = "too slow" in longitudinal studies
- Specificity?
 - None = meniscal subluxation can mimic cartilage loss
- Positioning in multicenter studies?
 - Difficult or even problematic

- Sensitivity to change?
 None = "too slow" in longitudinal studies
- Specificity?
 - None = meniscal subluxation can mimic cartilage loss
- Positioning in multicenter studies?
 - Difficult or even problematic
- How about key features of OA, e.g. BMLs, meniscus, synovitis...?

Time to Say "Au Revoir" to the X-ray!

- Why we perform x-ray?
 OP and JSN (indirect visualization of cartilage)
- Sensitivity to change?
 None = "too slow" in longitudinal studies
- Specificity?
 - None = meniscal subluxation can mimic cartilage loss
- Positioning in multicenter studies?
 - Difficult or even problematic
- How about key features of OA, e.g. BMLs, meniscus, synovitis...?
 - Can't visualize them

Guermazi A et al. Arthr Res Ther 2011: 13:247

Imaging of OA Using MRI

- Choice of appropriate MRI pulse sequences is essential for scientifically meaningful interpretation of MRI-derived data
 - Cartilage
 - Bone marrow lesions (BML)
 - Meniscus
 - Synovitis

- Cartilage damage
 - Semiquantitative (SQ)
 - Grading of cartilage damage (e.g. grade 0-6)
 - Assessment of early OA:
 - T2w or Iw or PDw fs FSE sequence should be used
 - GRE (e.g. DESS, FLASH, SPGR) is not suitable
 - Quantitative (Q)
 - Segmentation of the entire cartilage for volume/thickness measurement
 - GRE sequence is suitable

Focal Cartilage Defect

- Manifests in routine MRI as a focal lesion with acutely angled margins
- Lesion of the cartilage without change in thickness or cartilage surface is called signal change and only visible on T2-w
- GRE sequences are unsuited to detect subtle cartilage abnormalities including cartilage focal defects
 - Very prone to susceptibility artifact making it difficult to differentiate true focal defect from signal change due to artifact
 - GRE are suitable for quantitative cartilage segmentation
- Water sensitive sequences are ideal for focal defect
 assessment

Recht MP, et al. Am J Roentgen 2005;185:899-914 Hayashi D, et al. Arthritis Rheum 2010;62:3830-1 Bauer JS, et al. Invest Radiol 2008;43:604-611

Hayashi D, et al. Arthritis Rheum 2010;62:3830-383 Roemer FW, et al. Eur J Radiol 2011;80:e126-131

MRI Sequences Acronyms							
Type of sequence	Philips	Siemens	GE	Hitachi	Toshiba		
Fast SE	Turbo SE	Turbo SE	Fast SE	Fast SE	Fast SE		
Ultra fast SE	SSH-TSE UFSE	SSTSE HASTE	SS-FSE	FSE - ADA	(Super)FASE DIET		
Gradient echo (GE)	FFE	GRE	GRE	GE	FE		
Spoiled GE	T ₁ -FFE	FLASH	SPGR MPSPGR	RSSG	RF-spoiled FE		
Ultra fast GE	T₁-TFE T₂-TFE THRIVE	TurboFLASH VIBE	FGRE Fast SPGR FMPSPGR VIBRANT FAME LAVA	SARGE	Fast FE RADIANCE QUICK 3D		
Ultrafast GE with magnetization preparation	IR-TFE	T ₁ /T ₂ - TurboFLASH	IR-FSPGR DE-FSPGR		Fast FE		
Steady state GE	FFE	FISP	MPGR, GRE	TRSG	FE		
Contrast enhanced steady state GE	T ₂ -FFE T ₂	PSIF	SSFP		FE		
Balanced GE	Balanced FFE	True FISP	FIESTA	BASG	True SSFP		

Application of GRE in Neuroradiology

Choice of MRI Pulse Sequence

- Bone marrow lesions (BML)
 - Aka 'bone marrow edema pattern'
 - GRE sequences are insensitive to marrow abnormalities
 - May lead to underestimation of BML size or failure to detect BML
 - T2w/Iw/PDw fs FSE or STIR sequence should be used

Fat Suppression (Fat Saturation vs. IDEAL)

Choice of MRI pulse Sequence

• <u>Meniscus</u>

- Both coronal and sagittal planes are used
- Slice thickness should be no more than 3mm
- Ideally, Iw FSE with a long TR should be used
- Long TE sequences (e.g. T2w FSE) and GRE sequence are relatively insensitive for meniscal tears

Sequence	TE (ms)
T2-weighted (T2w)	≥80
Proton density-weighted (PDw)	≤10
Intermediate-weighted (lw)	~35

Englund M, et al. Nature Rev Rheumatol 2012 May 22

MRI Artifact on Short TE Sequence

Choice of MRI Pulse Sequences

Synovitis

- True extent can only be appreciated by CE T1w sequence
- Can also be assessed on non-enhanced MRI as 'Hoffa-synovitis' and 'effusion-synovitis'
 - but joint fluid and inflamed synovium cannot be differentiated
- T2w/Iw/PDw fs FSE sequence should be used
- GRE sequence not suitable
 - Prone to chemical shift artifact

Loeuille D, et al. Osteoarthritis Cartilage 2011;19:1433-9

<image>

Hayashi D, et al. Semin Arth Rheum 2011;41:116-30

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Why Not Use Gd in OA?

- Extra imaging time
 Add 5-10 min to usually 45-50 min exam
- Expensive
 - Add \$50 to \$400-500 per exam
- · Not without risk to the participant
 - <u>Very low</u> risk of nephrogenic systemic fibrosis (NSF)
 - Exclude patients with renal insufficiency
 - Extremely rare allergy

Role of CE-MRI for Synovitis in OA

- · Synovitis in OA is a known source of pain
- Gd administration is recommended if we aim to assess comprehensively synovitis thickening in OA participants
- CE-MRI-based SQ scoring system published
- Could be useful in clinical trials as a marker of therapeutic response
 - Potential DMOAD?

How to Include Patients with Synovitis in Clinical Trials?

- KLG 2-3?
- Pain: other structures can be painful
- Palpation: Most of the synovitis is located deep in the notch posterior to the PCL (71.2% vs. 59.5% supra-patellar)
- Synovial biopsy: gold standard
 - Invasive since multiple areas should be biopsied
 - Unethical in long longitudinal trials
- Inflammation biomarkers: does systemic biomarker translates to a local OA joint inflammation?
- Imaging:
 - Scintigraphy: non specific
 - Ultrasound-Doppler: difficult for longitudinal FU,
 - improper for deep-located synovitis
 - CE-MRI: ideal for inclusion and FU

Roemer F, et al. OAC 2010;18:1269-74

Orientation of Image Acquisition

- In multicenter trials, all imaging centers need to ensure the correct orientation of image acquisition: "Easy To Achieve"
 - Axial, coronal, sagittal
- One imaging center in multicenter study had a problem
 - Sagittal images were actually acquired in an 'oblique sagittal' plane
 - Problem for reading and data interpretation

Image Interpretation – The case of BML's

Traumatic	Non-traumatic
 Fracture (subchondral / osteochondral) Contusion / "bone bruise" Stress reaction and overuse Insufficiency fracture SONK OCD 	 Infarct / avascular necrosis Transient BME / idiopathic Infection Rheumatic Infiltration Peritumoral Chondropathy / Osteoarthritis Tendinopathy Enthesiopathy Physiologic red marrow / normal

In the Future: All in One?							
Parameters	Sagittal Intermediate- weighted (2D) FSE SPAIR	Coronal Intermediate- weighted (2D) FSE SPAIR	Axial Intermediate- weighted (2D) FSE SPAIR	Sagittal source 3D FSE SPAIR Intermediate- weighted			
Repetition time (ms)	2342	2342	3045	2500			
Echo time (ms)	50	50	50	35			
Matrix	224 x 176	224 x 176	224 x 176	300 x 258			
FOV (cm)	16	16	16	18			
Slice thickness (mm)	4	4	4	0,6 x 0,6 x 0,7			
Echo train (n)	14	14	14	65			
Excitations (n)	4	4	4	1			
Bandwidth	395	386	429	255			

