The Aging Process and Epigenetics: Relationship with OA

Louise N Reynard

louise.reynard@ncl.ac.uk

Talk outline

- Background epigenetic alterations as a hallmark of aging
- Epigenetic changes in the aging joint review of the current literature
- Is cartilage aging accelerated in OA cartilage?
- Identification of DNA methylation changes that occur in aging cartilage and OA
- Conclusions

The Hallmarks of Aging

The Hallmarks of Aging Review

Cell Carlos López-Otín,¹ Maria A. Blasco,² Linda Partridge,^{3,4} Manuel Serrano,^{5,*} and Guido Kroemer^{6,7,8,9,10}

DNA methylation Chromatin marks non-coding RNAs

What is epigenetics?

heritable changes in gene expression/phenotype that occur without changes in the DNA sequence

DNA methylation

Me

Addition of methyl groups to CpG sites, altering TF binding

Histone modifications

Addition of molecules to the 'tails' of histones, resulting in changes to chromatin accessibility

Non-coding RNAs

Regulate transcription, splicing and translation. Include microRNAs and long non-coding RNAs e.g. *XIST*

What epigenetic changes occur with aging?

DNA methylation

• Genome-wide demethylation (global hypomethylation)

Promoter-specific increase in methylation (local hypermethylation)
e.g. *OP1/BMP7* in cartilage

Histone modifications

• Changes in histone modifying enzymes

• Global changes in levels of specific histone modifications e.g. H3K9me, H4K16ac

• Changes to specific gene promoters e.g *NFAT2C* in mouse cartilage HIRA H4 K16ac H3 K9me¹ K20me¹ / me^{2 (in vitro)}, H4 K20me³ (in vivo) Aging Histones Polyamines CAF-1, Asf1, SLBP EZH2, NuRD, HDAC1, HP1 H3 K9me², K9me³, S10p, K18Ac, H3 K27me¹ K27Ac, K56Ac, H4 K20me³ (in vitro)</sup> Feser and Tyler, FEBS Lett. 2011

Non-coding RNAs

- Altered miR-320c, miR-193b, miR-199a-3p in human cartilage with age
- Increased miR-21 in aged horse cartilage

Hypothesis

Age-related loss of normal epigenetic modifications is a possible mechanism for the late onset of common human diseases *Bjornsson et al., 2004*

Talk outline

• Background - epigenetic alterations as a hallmark of aging

• Epigenetic changes in the aging joint - review of the current literature

• Is cartilage aging accelerated in OA cartilage?

• Identification of DNA methylation changes that occur in aging cartilage and OA

• Conclusions

Do epigenetic alterations occur in the aging joint?

Epigenetic alterations are one of the hallmarks of aging

The other hallmarks of aging occur in the aging joint and in OA

So what about epigenetic alterations?

Expression studies suggest epigenetic changes do occur

GADD45B

9.5

7.0-

50

function

60

70

age (yrs)

 $r^2=0.549$

P=0.0058

80

90

1. Peffers et al 2013; data provided by Mandy Peffers

The BMP7 promoter becomes hypermethylated with age

Age-dependent expression of NFAT2C in mouse cartilage is regulated by dynamic histone methylation

Rodova et al., 2011

miR-21 is up regulated in cartilage with age and in OA

Talk outline

Background - epigenetic alterations as a hallmark of aging

• Epigenetic changes in the aging joint - review of the current literature

• Is cartilage aging accelerated in OA cartilage?

• Identification of DNA methylation changes that occur in aging cartilage and OA

• Conclusions

Some genes involved in aging processes have altered methylation in OA cartilage

Whole genome methylation analysis using the Illumina Infinium Human Methylation450 BeadChip

- measures methylation at ~480,000 CpG sites throughout genome
- Identified differentially methylated CpGs between control hip (n=42) and OA hip cartilage (n=17)[#]

Da	Genomic instability	e.g. TRIP13, NEIL3, POLK, RFC3, PRA1
-Je	Telomere attrition	e.g. TNKS, MAX, BCL2
	Epigenetic alterations	e.g. DNMT3A, DICER, HDAC4, HDAC9
	Loss of proteostasis	e.g. ARSB, CTSB, HSPA1, DNATC17
ΨI	Deregulated nutrient sensing	e.g. GHR, IRS1, IGF1R, IGFBP2, FOXO3
***	Mitochondrial dysfunction	e.g. BDH1, HK1, KMO, HERC2, MRPL1
	Cellular senescence	e.g. LIMS1, SOCS3, PRKCD, IL6, IL1B
\bigcirc	Stem cell exhaustion	e.g. SRED2, NOTCH1, DLX2, MSI2
S	Altered intercellular communication	e.g. ATXN1, ATXN2, GJA1, BST2, CDH13

Suggests the aging process may be altered in OA cartilage

#10% methylation difference, Benjamini-Hochberg adjusted p value <0.01

DNA methylation can predict age

Multi-tissue predictor of age developed using 8000 samples from 82 methylation datasets of 51 healthy tissues and cell types

Methylation level of 353 CpG sites form an 'aging clock' that predict age

Epigenetic aging is accelerated in several diseases

Obesity accelerates epigenetic aging of human liver

Steve Horvath^{a,b,1}, Wiebke Erhart^c, Mario Brosch^d, Ole Ammerpohl^e, Witigo von Schönfels^f, Markus Ahrens^f, Nils Heits^f, Jordana T. Bell^g, Pei-Chien Tsai^g, Tim D. Spector^g, Panos Deloukas^{h,i,j}, Reiner Siebert^e, Bence Sipos^k, Thomas Becker^f, Christoph Röcken^l, Clemens Schafmayer^{f,2}, and Jochen Hampe^{d,2}

Aging Cell (2015) 14, pp491-495

Accelerated epigenetic aging in Down syndrome

Steve Horvath,^{1,2,*} Paolo Garagnani,^{3,4,5,*} Maria Giulia Bacalini,^{3,4,6} Chiara Pirazzini,^{3,4} Stefano Salvioli,^{3,4} Davide Gentilini,⁷ Anna Maria Di Blasio,⁷ Cristina Giuliani,⁸ Spencer Tung,⁹ Harry V. Vinters⁹ and Claudio Franceschi^{4,10}

RESEARCH ARTICLE

Acceleration of Age-Associated Methylation

Patterns in HIV-1-Infected Adults

Tammy M. Rickabaugh¹, Ruth M. Baxter², Mary Sehl^{1,3}, Janet S. Sinsheimer^{2,3,4}, Patricia M. Hultin⁵, Lance E. Hultin¹, Austin Quach², Otoniel Martínez-Maza^{5,6}, Steve Horvath², Eric Vilain^{2‡}, Beth D. Jamieson^{1‡}*

Marioni et al. Genome Biology (2015) 16:25 DOI 10.1186/s13059-015-0584-6

RESEARCH

DNA methylation age of blood predicts all-cause mortality in later life

Riccardo E Marioni^{1,2,3†}, Sonia Shah^{3,4†}, Allan F McRae^{3,4†}, Brian H Chen^{5,6†}, Elena Colicino^{7†}, Sarah E Harris^{1,2},

Is aging altered in OA cartilage?

Cartilage type	n number	Actual age	meth age	meth – actual
control hip	42	77.8yrs	71.1yrs	-6.7yrs
OA hip	17	67.5yrs	66.6yrs	-0.9yrs
OA knee	63	70.6yrs	66.5yrs	-4.0yrs

Methylation vs chronological age

Why does OA hip cartilage have accelerated epigenetic aging relative to normal hip and OA knee cartilage?

There is altered methylation of clock CpG sites in OA hip and knee cartilage (>0.05 beta, p<0.01)

Why does OA hip cartilage have accelerated epigenetic aging relative to normal hip and OA knee cartilage?

OA hip vs hip control

25/353 CpGs 2 hypermethylated in OA 23 hypomethylated in OA

Annotation	P value
cell motility	0.001
cellular physiological process	0.003
axis	0.009
chemotaxis	0.009
regulation of physiological process	0.01
regulation of biological process	0.02
cell differentiation	0.02
regulation of apoptosis	0.03
regulation of programmed cell death	0.03

Hip control vs OA knee

198/353 CpGs 163 hypermethylated in ctl 35 hypomethylated in ctl

Annotation	P value
regulation of physiological process	0.002
regulation of biological process	0.003
positive regulation of physiological process	0.004
apoptosis	0.01
programmed cell death	0.01
cell death	0.02
death	0.02
regulation of nucleic acid metabolism	0.02
regulation of cellular physiological process	0.01
positive regulation of NF-kappaB cascade	0.03
regulation of cellular process	0.03
regulation of metabolism	0.03

OA hip vs OA knee 52/353 CpGs 35 hypermethylated in hip 17 hypomethylated in hip

Annotation	P value
regulation of biological process	0.01
regulation of physiological process	0.01
chromatin modification	0.02
intercellular junction assembly	0.02
regulation of transcription	0.02
regulation of nucleic acid metabolism	0.03
intercellular junction assembly/maintenance	0.03

GATHER gene annotation tool http://gather.genome.duke.edu/

There is altered methylation of clock CpG sites in OA cartilage

Clock CpGs are aberrantly methylated in OA cartilage

Āge does not affect methylation of several clock CpG sites

Talk outline

- Background epigenetic alterations as a hallmark of aging
- Epigenetic changes in the aging joint review of the current literature
- Is cartilage aging accelerated in OA cartilage?
- Identification of DNA methylation changes that occur in aging cartilage and OA
- Conclusions

Does methylation change with age in cartilage?

Identified CpG sites whose methylation changes with age using linear regression of M values for

• 42 hip controls samples (aged 62-95yrs)

(aged 45-90yrs)

(aged 53-88yrs)

- 17 OA hip samples
- 63 OA knee samples

Majority of CpGs that change with age are cartilage subtype-specific

238 CpG sites change with age in normal hip cartilage

CpG sites are enriched in genes involved in organogenesis and ECM-receptor interaction

- 82 CpG sites in 69 genes decrease with age
- 156 CpG sites in 106 genes increase with age

There are 650 age CpG sites in OA hip cartilage

Annotation	p value	
Gene ontology		
transcription from PolII promoter	0.0008	
negative regulation of transcription	0.003	
cytoskeleton organisation	0.006	
establishment/maintenance of polarity	0.01	
vesicle fusion	0.01	
vesicle mediated transport	0.02	
protein localisation	0.02	
regulation of cellular process	0.03	
cofactor catabolism	0.03	
Transcription factors		
FOX	< 0.0001	
PIT1	< 0.0001	
E2F1	< 0.0001	
FOXD3	< 0.0001	
CDC5c-MYC	< 0.0001	
FOXO4	< 0.0001	
NFKB	< 0.0001	
HNF3A	< 0.0001	
GATA3	0.0001	
CEBPdelta	0.0002	
MRF2	0.0003	
HNF3B	0.0004	
SP3	0.0005	

GATHER gene annotation tool http://gather.genome.duke.edu/ 179 CpG sites in 141genes decrease with age
471 CpG sites in 318 genes increase with age

Enriched for genes involved in transcription, cell polarity and cytoskeleton organisation

556 CpG sites change with age in OA knee cartilage

90 CpG sites in 73 genes decrease
466 CpG sites in 325 genes increase
CpG sites are enriched in genes involved in transcription, metabolism and development

Annotation	p value	
Gene ontology		
regulation of transcription	< 0.0021	
regulation of metabolism	0.0003	
development	0.0008	
regulation of physiological process	0.0009	
morphogenesis	0.003	
organogenesis	0.01	
unfolded protein response	0.02	
Frizzled signalling pathway	0.03	
KEGG pathways		
phoshatidylinositol signalling system	0.01	
Transcription factors		
KROX	0.0002	
E2F1	0.0007	
c-Ets-1	0.002	
HNF3B	0.004	
CDX2	0.004	
SP3	0.01	
OLF1	0.01	
FOXD3	0.01	
MAZ	0.02	
FOXJ2	0.02	
GATA1	0.02	
ELK1	0.03	
HNF1	0.03	

GATHER gene annotation tool http://gather.genome.duke.edu/

Overlap of genes with age-related methylation and expression changes

Talk outline

- Background epigenetic alterations as a hallmark of aging
- Epigenetic changes in the aging joint review of the current literature
- Is cartilage aging accelerated in OA cartilage?
- Identification of DNA methylation changes that occur in aging cartilage and OA
- Conclusions

Conclusions

- Epigenetic alterations are one of the hallmarks of aging
- There are few studies of age-related epigenetic changes in joint tissues

BUT

- Gene-specific methylation and chromatin age-related changes have been reported in cartilage, as have changes in expression of specific miRNAs
- Normal hip cartilage is epigenetically younger than OA hip cartilage based on the Horvath clock predictor
- Methylation at multiple CpG sites change with age in cartilage
- CpG sites whose methylation change with age are different between normal and OA cartilage and between hip and knee cartilage.

Acknowledgments

Andrew J Skelton

David Young

Hannah Elliott

Mandy Peffers, University of Liverpool

Peter Clegg, University of Liverpool

John Loughlin

Bioinformatics Support Unit, Newcastle University

Staff at RVI and Freeman Hospitals, Newcastle

