OARSI Year in Review: Mechanics

Alan J. Grodzinsky

Center for Biomedical Engineering Departments of Biological Engineering, Mechanical Engineering, Electrical Engineering and Computer Science MIT

Mechanics \leftrightarrow Biology \leftrightarrow OA

Gait, Knee OA, Kinematics; Cartilage, Muscle...

Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis OAC 2014

E.F. Chehab † ‡ *, J. Favre †, J.C. Erhart-Hledik † §, T.P. Andriacchi † § ||

Department of Mechanical Engineering, Stanford, CA, United States

Osteoarthritis and Cartilage

Baseline knee adduction and flexion moments during walking

- Medial compartment contact force best approx. by a combo of KFM and KAM, rather than KAM alone
- 5-year prospective study; subjects with medial knee OA
- Baseline (60 yr) & 5-year MRI to assess KAM and KFM
- Conclusions: KAM had greater influence on:
 - femoral cartilage changes (medial-to-lateral cartilage thickness ratio);
 - subjects with more severe OA

KFM had greater influence on:

- ► tibial cartilage thickness;
- subjects with less severe OA
- **Implications** for reducing OA progression: focusing only on KAM may not be sufficient....pain modifies joint loading.....

Gait, Knee OA, Kinematics; Cartilage, Muscle...

From: Knee Joint Muscle Forces & Tissue Stresses-Strains During Gait: Severe OA vs Normal; <u>M. Adouni, A. Shirazi-Adl</u>; (JOR 2014)

- OA changes in rotations/moments influence activation levels of lower extremity musculature.....
- Muscle forces dropped at nearly all stance periods....

Continued emphasis: Patient-Specific Analysis/Treatment

Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia OAC 2014

C.R. Henak ^{†a}, C.L. Abraham ^{†‡}, A.E. Anderson ^{†‡§}, S.A. Maas [†], B.J. Ellis [†], C.L. Peters [‡], J.A. Weiss ^{†‡*}

+ Department of Bioengineering and Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA

Chondrolabral contact mechanics

- Labrum in dysplastic hips is more significant in hip mechanics than in normal hips
- Labrum in dysplastic hips experiences loads 3-4 times larger than in normal hips
- The labrum in dysplastic hips should be preserved during surgery

Toward patient-specific articular contact mechanics (hip)

Gerard A. Ateshian^a, Corinne R. Henak^b, Jeffrey A. Weiss^c

^a Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA J Biomech 2015

^b Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA

^c Department of Bioengineering, Department of Orthopaedics, and Scientific Computing and Imaging Institute, University of Utah,

- There is now improved ability..... to perform complex 3-D contact analysis.
- Numerical methods based on FE analysis.....will soon enable patient-specific analysis of joint contact mechanics based on medical imaging data

Mechanics \leftrightarrow Biology \leftrightarrow OA

Dynamic contact stress patterns on the tibial plateaus during simulated gait: A novel application of normalized cross correlation Hongsheng Wang^{a,1}, Tony Chen^{a,1}, Peter Torzilli^b, Russell Warren^c, Suzanne Maher^{a,*} ^a Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, United States J Biomech 2014

Contact stress under 1kN static loading

- Differences in profile of contact stresses → medial and lateral menisci carry load at different points in the gait cycle
- Posterior aspect of <u>medial</u> <u>meniscus</u> distributes load during early phase of stance; posterior aspect of <u>lateral meniscus</u> distributes load during early <u>&</u> late phases of stance.

Meniscus Injuries Alter the Kinematics of Knees With Anterior Cruciate Ligament Deficiency Othop J Sports Med 2014

Ali Hosseini,* PhD, Jing-Sheng Li,*[†] MS, Thomas J. Gill IV,* MD, and Guoan Li,*[‡] PhD *Investigation performed at the Bioengineering Laboratory, Massachusetts General Hospital/*

MRI + Biplanar Fluoroscopy

Knee kinematics during stair climbing (21 patients):

 Combined meniscus + ACL injury alters kinematics of ACL-injured knees in a different way compared to knees with isolated ACL tears, depending on the pattern of the meniscus tear *In vivo* cartilage strain increases following medial meniscal tear and correlates with synovial fluid matrix metalloproteinase activity Teralyn E. Carter^a, Kevin A. Taylor^a, Charles E. Spritzer^b, Gangadhar M. Utturkar^a, Dean C. Taylor^a, Claude T. Moorman III^a, William E. Garrett^a, Farshid Guilak^a, Amy L. McNulty^a, Louis E. DeFrate^{a,*}

^a Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States

- Measured <u>in vivo tibiofemoral contact</u> <u>patterns</u> (during quasi-static lunge) and biomarkers in the synovial fluid of patients with meniscus tears
- Cartilage strain (medial & lateral) increased significantly at max flexion angle....

Correlated with total MMP
activity (via fluorogenic
substrates)

Mechanics \leftrightarrow Biology \leftrightarrow OA

Gait and Joint Mechanics

Mechanobiology

PNAS 2014

Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage

Whasil Lee^a, Holly A. Leddy^b, Yong Chen^a, Suk Hee Lee^a, Nicole A. Zelenski^b, Amy L. McNulty^b, Jason Wu^c, Kellie N. Beicker^d, Jeffrey Coles^e, Stefan Zauscher^e, Jörg Grandl^c, Frederick Sachs^f, Farshid Guilak^{b,e,1}, and Wolfgang B. Liedtke^{a,c,g,1}

- Recently identified mechanically activated ion channels Piezo 1/2 were found to be expressed by chondrocytes
- Cell compression evoked Ca++ signals!!
- Studied primary chondrocytes and pig cartilage explants: role of Piezos in mechanically induced cell death

- In primary chondrocytes, mechanically evoked Ca2+ transients produced by AFM were inhibited by the Piezo blocking peptide GsMTx4 (from tarantula venom), and by Piezo1- or Piezo2specific siRNA.....
- GsMTx4 also inhibited cell death around a biopsy wound induced by cutting into porcine explant...a potential therapeutic target....

• High strain mechanical cues are thereby linked to mechanically sensitive ion channels, functionally linked to the cytoskeleton

The effect of compressive loading magnitude on in situ chondrocyte calcium signaling Biomech Model Mechanobio 2014

Ryan M. J. Madden · Sang-Kuy Han · Walter Herzog

- Calcium signaling in intact cartilage differs from isolated cells
- Intact rabbit patellar bone-cartilage samples w. Ca-sensitive dyes imaged continuously under 10-40% compression...
- Ca signaling mainly caused by dynamic loading; greatly increased above 10% strain....

Fig. 3 a Exemplar field of view (x–y plane) showing fluorescently labeled cells (*scale bar* = $50 \,\mu$ m).

Pre-Clinical & Safety

Biomechanics of Animal Joint Cartilage

All the animals at Mr. Jones' Farm assemble to hear a pig describe a dream about a world where all animals live free from the tyranny of humans.....

Pre-Clinical

George Orwell, 1945:

Pre-Clinical

"Four legs good, two legs bad."

"All animals are equal, but <u>some</u> <u>animals are</u> <u>more equal than</u> others."

OARSI

Biomechanics of Mouse Cartilage

Nanomechanical phenotype of chondroadherin-null murine articular cartilage Matrix Biology 2014

Mike Batista, **Dick Heinegård**, Patrik Önnerfjord.....Lin Han

 CHAD-deletion resulted in ~70–80% reduction in the indentation modulus of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old CHAD–/– mice compared to wild type.

Nanomechanical phenotype of chondroadherin-null murine articular cartilage Matrix Biology 2014

Mike Batista, **Dick Heinegård**, Patrik Önnerfjord.....Lin Han

 CHAD-deletion resulted in ~70–80% reduction in the indentation modulus of the superficial zone knee cartilage of 11 weeks, 4 months and 1 year old CHAD–/– mice compared to wild type.

High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis J Biomechanics 2015 Hadi T. Nia^a, Stephanie J. Gauci^b, Mojtaba Azadi^a, Han-Hwa Hung^c, Eliot Frank^c, Amanda J. Fosang^b, Christine Ortiz^d, Alan J. Grodzinsky^{a,c,e,f,*}

Dramatic <u>decrease in high frequency stiffness</u> and increased hydraulic permeability of <u>GAG-depleted</u> <u>superficial zone cartilage</u> (even with intact collagen network): cartilage <u>of mice and men</u> can no longer resist impact loads relevant to traumatic injury

Wide Range of Loading Rates Heiner...Brown, Cartilage, 2012 milli sec Loading Time scale (s) 10⁻³ 10⁻¹ 10⁰ -4 -2 10 traumatic impact jumping - landing jumping - take off running kicking - soccer walking 2 10⁰ 3 10¹ 4 10 10 10 Loading Frequency Content (Hz) 1,000 Hz

$\textbf{Mechanics} \leftrightarrow \textbf{Biology} \leftrightarrow \textbf{OA}$

Molecular-Level Nanomechanics

Aggrecan Nanoscale Solid—FluidACS Nano 2015Interactions Are a PrimaryDeterminant of Cartilage DynamicMechanical PropertiesMathematical Properties

Hadi Tavakoli Nia, Lin Han, Iman Soltani Bozchalooi, Peter Roughley, Kamal Youcef-Toumi, Alan J. Grodzinsky,^{*} and Christine Ortiz^{*}

Molecular-Level Nanomechanics: Aggrecan provides basis for cartilage poroelasticity

Hadi Nia+, ACS Nano 2015

$\textbf{Mechanics} \leftrightarrow \textbf{Biology} \leftrightarrow \textbf{OA}$

