Interactions Between OA & Other Common Conditions

Gillian Hawker MD MSc FRCPC Sir John & Lady Eaton Professor and Chair of Medicine University of Toronto

Disclosure

- No conflicts of interest
- Acknowledgements
 - Lauren King MD, PGY2 in Medicine
 - Tetyana Kendzerska MD PhD, post doctoral fellow

Objectives

- Brief introduction
- Discuss impact of OA as a comorbid condition on management & outcomes of other conditions
- Review the evidence linking OA to metabolic syndrome (diabetes, hypertension, hyperlipidemia, obesity)
 - Metabolic OA phenotype

- Globally, aging populations & growing prevalence of obesity → increased population risk for hypertension, dyslipidemia, diabetes, cardiovascular disease...
 - ... & osteoarthritis (OA)

OA is the fastest growing major health condition

Ranking of Major Causes of Death and Disability (%DALYs)

Lancet 15 December 2012

Major Challenges to Dx & Mgmt of OA

- Societal attitudes / beliefs about OA
- Physician knowledge / awareness
- Attitudes and beliefs about 'pain killers'
- Co-existent medical problems
 - Competing demands
 - Contraindications to OA therapies

Co-Existent Medical Conditions

- 90% of people 65+ years with OA have ≥ 1 other chronic condition (common risk factors: aging, obesity)
 - Most commonly cardiovascular disease (CVD), type 2 diabetes, hypertension
 - + depressed mood (~ 1/3) impacts adherence / effectiveness of therapies

US Medicare & Medicaid Report, 2012 Edition. Baltimore, MD. Trelle S et al (2011) BMJ 342:c7086. Hackam DG et al 2010. Can J Cardiol 26: 249-258. Nieves Plaza et al J Clin Rheum 2013 K Magnusson et al Arthritis Care & Res 2014

Clustering of Common Chronic Conditions Potential Explanations - 1

What is the evidence that OA impacts physical activity?

- Surveys
 - US men aged 66-74 years 60% reported activity limitations due to chronic back, hip or knee pain and most managing their pain with sedentary activities / rest

• Qualitative studies:

- People with OA frequently manage joint pain by giving up activities (risk of taking pain killers, not offered other options)
- In setting of multiple health conditions
 - Patients prioritize the condition(s) seen as 'more severe' or with worse future implications
 - To balance health care issues, most frequently dropped activity was exercise
- In patients with diabetes
 - Arthritis cited as a barrier to CVD risk factor control (physical activity selfmanagement)

Impact of OA on outcomes of other common conditions?

Hip and Knee OA

Chronic disease management

Helmrich et al, N Engl J Med 1991 Appel et al, JAMA. 2003 Cheraghi-Sohi *Arthritis Care & Res* 2013 6/8/2015

Walking disability and mortality risk

- Population based cohort 35+ years with symptomatic hip/knee OA recruited 1994-5 from 40 English general practices (n=2,703)
- Examined survival status & cause of death to February 2009 using data from National Statistics
- Controlling for age, sex, diabetes, cancer, CVD, walking disability (1.48, 1.17 to 1.86) predicted ↑ all-cause death (mainly from CVD causes)

Neusch et al BMJ 2011

Grip strength, walking disability and risk for CVD & diabetes complications

- Population cohort 55+ years, symptomatic hip/knee OA recruited 1996-98 using tax records (n=2,156)
 - HAQ walking & grip strength (0-3)
- Whole cohort:
 - Examined hospital admission for CVD (AMI, CABG or PCI, CHF, stroke or TIA) & survival to Feb 2012 using provincial administrative databases
- Subset with diabetes at baseline:
 - Examined hospital admission for diabetes-specific complication (hypoor hyperglycemia, soft tissue infection, amputation, end-stage renal disease)

Grip strength, walking disability and risk for CVD & diabetes complications

Outcome	Median Follow-Up	%
All-cause death (n=2156)	13.2 years	57%
Composite CVD outcome (n=2156)	9.2 years	38%
Diabetes complication* (n=357)	6.5 years	37%

*102 experienced at least one infection; 47 hypoglycemia; 10 amputations; 11 hyperglycemia; and 4 initiated chronic dialysis

Grip strength, walking disability and risk for CVD & diabetes complications

Walking disability predicted \uparrow all-cause death (aHR 1.30, 1.22-1.39, p<0.001) & \uparrow CVD events (aHR 1.17, 1.08-1.27, p=0.001)

*Covariates: age, sex, income, diabetes, hypertension, smoking, NSAIDs, frailty, preexisting CVD

Subgroup OA + DM: Walking disability and grip strength predicted ↑ diabetes complications: aHR per HAQ walking score 1.25 (1.01-1.55), p=0.04; aHR per HAQ grip strength score 1.21 (1.01-1.45), p=0.04

Survival curves for those who did and did not receive a primary, elective hip or knee replacement

Medicine UNIVERSITY OF TORONTO

Ravi B et al BMJ 2014

Comparative Effects: Physical Activity

Summary

- Large well-controlled observational studies show consistent independent relationship between walking disability and future CVD events, diabetes complications & all cause death
 - Risk for all-cause death:
 - UK study: adj. HR for self-reported walking disability =1.48 (1.17-1.86)
 - Canadian study: adj. HR for HAQ walking score ≥ 2 = 1.51 (1.34-1.70)
- Possible explanations
 - Unmeasured confounding
 - Physical inactivity due to disabling OA
 - Stress (pain, depressed mood)
 - NSAIDs
 - Systemic inflammation? *Metabolic OA Phenotype*

OA Pathogenesis: Influence of Aging and Obesity

Metabolic syndrome

- Cluster of cardiac risk factors:
 - Abdominal obesity
 - Dyslipidemia
 - Impaired fasting glucose
 - Hypertension (atherosclerosis)
- Visceral adiposity → abnormal lipid metabolism + generation of inflammatory mediators (adipokines) → activation of reninangiotensin-aldosterone system, ++ catecholamine production, insulin resistance, endothelial dysfunction

Puenpatom RA Postgraduate Medicine 2009

Adipokines influence all joint tissues

e.g., infra-patellar fat pad

Conde J et al *Arthritis* 2011 Sellem J & Berenbaum F *Joint Bone Spine* 2013

Clustering of Common Chronic Conditions Potential Explanations - 2

Metabolic OA: 5th component of MetS?

Zhuo, Q. *et al.* (2012) Metabolic syndrome meets osteoarthritis *Nat. Rev. Rheumatol.* doi:10.1038/nrrheum.2012.135

Medicine UNIVERSITY OF TORONTO Reduced blood flow in

Metabolic syndrome and OA

- Adjusting for *age and BMI*:
 - ~ 3X > MetS in OA vs general population; relationship stronger in < 65 years
 - OA patients more sedentary (accelerometers), > more MetS
 - Number of MetS components predicted risk of development & progression of knee OA, hand OA

NHANES III: Puenpatom RA et al *Postgrad Med* 2009 Liu et al, *Arthritis Care Res* Yoshimura N et al *OA&C* 2012 – ROAD study Sowers M et al *Arthritis Rheum* 2009

Relationship stronger for knees and hands than hips

<u>Metabolic syndrome</u> = 2+ of hypertension, diabetes, obesity, hyperlipidemia <u>OA</u> = pain, swelling, stiff in hips/knees or hands for at least 6 weeks in past 3 months <u>Severe OA</u> = OA with functional limitations, e.g. difficulty walking

Metabolic OA: 5th component of MetS?

Atherosclerosis (carotid intima media thickness, carotid placque) independently associated with knee & hand, not hip OA

Summary

- Independent associations between MetS and its components with OA (knee, hand, women, younger adults > hip, men, older adults?)
- S What is the relative contribution of re disability versus systemic ar inflammation?
- Limitations:
 - Variable definitions of MetS and OA
 - Variable control for key confounders (age, obesity, smoking, alcohol, etc)

lity,

VD

Interactions Between OA & Other Common Conditions CLINICAL IMPLICATIONS

Pivotal role of physical activity

combination of aerobic, resistance, balance + flexibility exercises

↓ Metabolic Alterations

- accumulation of advanced glycation end-products [AGEs]
- lipid metabolism
- excess adipose tissues/fatty acids
- hyperglycemia
- systemic inflammation
 - Walking + weight loss in OA reduced IL-6 levels – Messier et al JAMA 2013

• ↓ Physical Impairments

- activity/mobility limitations
- deconditioning
- excess body weight/joint loads
- joint stiffness
- muscle weakness/loss of lean muscle mass
- poor balance/falls

Positive effect of PA on depressed mood...sleep

Piva SR et al, Clin Geriatr Med 2015

6/8/2015

Clinical Implications

- OA is a risk factor for CVD?
 - Impact on treatment decisions (e.g. NSAIDs)

Core treatments		
Appropriate for all individuals		
Land-based exercise	Water-based exercise	
Weight management	Self-management & education	
Strength training		

Knee OA with other health problems Multi-joint OA with other health problems

Biomechanical interventions Intra-articular corticosteroids Topical NSAIDs	Biomechanical interventions Intra-articular corticosteroids Oral Cox-2 inhibitors (selective NSAIDs)
	Duloxetine

Future directions

- Larger, prospective studies to confirm/examine temporal relationships & elucidate mechanisms beyond age & BMI
 - OA incidence and progression
 - Structure versus symptoms
 - Weight-bearing vs non weight-bearing joints
- Clinical trials of impact of Rx of metabolic syndrome / components on OA incidence and progression
 - Modifiable risk factors for OA?
- Clinical trials of impact of Rx of OA disability on outcomes for other conditions associated with MetS

Thanks

