Year in review: genetics and genomics

Unnur Styrkársdóttir, PhD deCODE genetics, Reykjavík, Iceland unnurst@decode.is

Recent advances in human genetics

- Genome wide association studies:
 - Genotyping SNP-Chips
 - Large sample sets
 - Replication of identified associations
 - Small effects
 - Significance threshold $< 5 \times 10^{-8}$
 - Polygenic = larger sample-size to uncover
 - Collaborations!

Examples from other diseases and traits

- Height; 253,000 individuals
 - 697 GWS loci
 - Explain 25% variance of height

- Type 2 diabetes; ca. 35,000 cases/ 115,000 controls
 - 70 GWS loci
 - Ca 15% of heritability

GWS loci for Osteoarthritis

• 17 genomic loci; 2 Asian specific:

- arcoGEN study: 15,000 cases /53,000 controls
- TreatOA hipOA meta: 11,000 cases / 67,000 controls
- TreatOA kneeOA meta: 6,700 cases / 44,000 controls
- GDF5 cand.gene meta: 6,800 knee OA / 10,000 controls

Publications since OARSI 2014

- 16 Candidate Gene Studies
- 7 Meta-analyses of publications
- 3 Genome-Wide Association Scans

Genomics: epigenetics and eQTL studies

Candidate Gene Studies

Underpowered without replications:

- Most with small sample sizes
 - 9 studies with less than 200 OA patients
 - Largest study 605 OA cases
 - One QTL study of two populations
 - Only one study investigates a GWAS signal (DOTL) (although a different phenotype)
- No replication attempted
- > Inconclusive results

Meta-analyses of public data

- Four genes analyzed
 - ESR1, VDR, TGFβ, GDF5

__

- Weak evidence of association ESR1, VDR and TGFβ
- Moderate association of GDF5 with knee OA
- None of these genes were associated in published GWA studies

Genome wide association studies

Severe osteoarthritis of the hand associates with common variants within the *ALDH1A2* gene and with rare variants at 1p31

Unnur Styrkarsdottir¹, Gudmar Thorleifsson¹, Hafdis T Helgadottir¹, Nils Bomer², Sarah Metrustry³,

Clinical and epidemiological research

EXTENDED REPORT

Genome-wide association and functional studies identify a role for *IGFBP3* in hip osteoarthritis

Daniel S Evans, ¹ Frederic Cailotto, ² Neeta Parimi, ¹ Ana M Valdes, ³ Martha C Castaño-Betancourt, ^{4,5} Youfang Liu, ⁶ Robert C Kaplan, ⁷ Martin Bidlingmaier, ⁸ Ramachandran S Vasan, Alexander Toumer ^{9,10}

Gregory J Tranah, ^{1,11} Michael C Nevitt, ¹¹ Steven R C Elizabeth Barrett-Connor, ¹³ Jordan B Renner, ¹⁴ Joann Sally A Doherty, ³ Andre G Uitterlinden, ^{4,5,15} Joyce B Rik J Lories, ^{2,17} Nancy E Lane ¹⁸

Ann Rheum Dis 2014;0,1-7

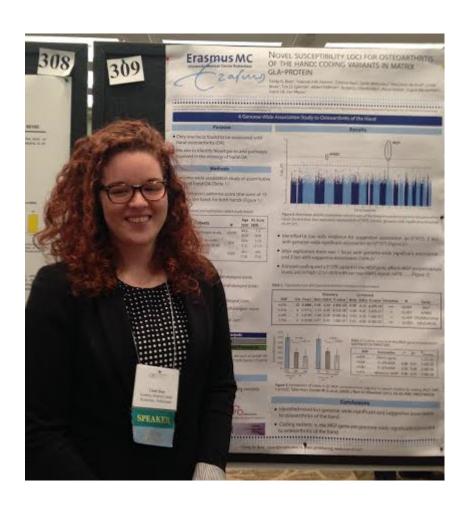
Moon et al. BMC Musculoskeletal Disorders (2015) 16:76 DOI 10.1186/s12891-015-0531-4

vangelos Evangelou^{5,6}, Deborah Hart³, Marian Beekman^{2,7,8}, F Eiriksson⁹, Margret Thorsteinsdottir^{9,10}, Michael L Frigge¹, fur T Magnusson¹, Gisli Masson¹, The TREAT-OA Consortium¹¹, el K Arden¹³, Thorvaldur Ingvarsson^{14,15}, Stefan Lohmander¹⁶, ira^{4,12}, Rob G H H Nelissen¹⁹, Tim Spector³, Andre Uitterlinden^{4,12}, ¹⁰, Ingileif Jonsdottir^{1,10}, Ana M Valdes^{3,20}, Ingrid Meulenbelt^{2,8}, fansson^{1,10}

Nature Genetics 46, 498–502 (2014)

VOLUME 46 | NUMBER 5 | MAY 2014 NATURE GENETICS

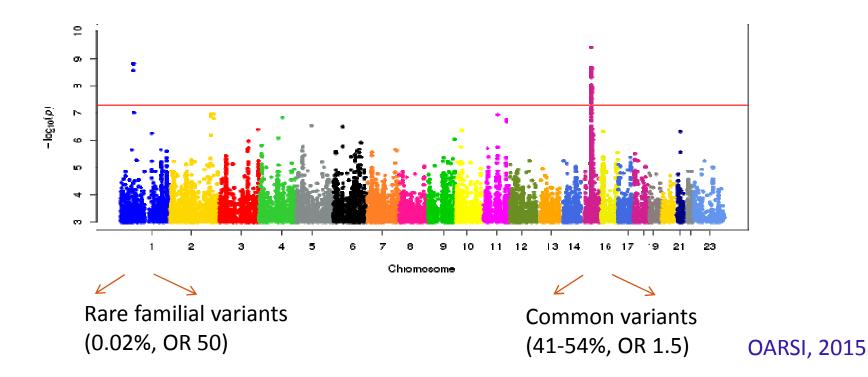
RESEARCH ARTICLE


Open Acces

A genome-wide association study of copy-number variation identifies putative loci associated with osteoarthritis in Koreans

Sanghoon Moon^{1†}, Bhumsuk Keam^{1,2†}, Mi Yeong Hwang¹, Young Lee¹, Suyeon Park^{1,4}, Ji Hee Oh¹, Yeon-Jung Kim¹, Heun-Sik Lee¹, Nam Hee Kim¹, Young Jin Kim¹, Dong-Hyun Kim³, Bok-Ghee Han¹, Bong-Jo Kim¹ and Juyoung Lee^{1*}

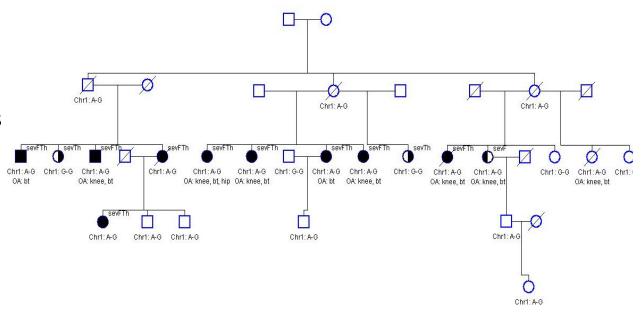
BMC Musculoskeletal Disorders 2015, 16:7


Poster#309: Hand OA QTL - MGP

Severe osteoarthritis of the hand associates with common variants within the *ALDH1A2* gene and with rare variants at 1p31 Nature Genetics 46, 498–502 (2014)

623 severe hand OA cases / 69,153 controls
Test 30 million sequence variants from WGS (rare and common)

Severe osteoarthritis of the hand associates with common variants within the *ALDH1A2* gene and with rare variants at 1p31


Rare signal at 1p31:

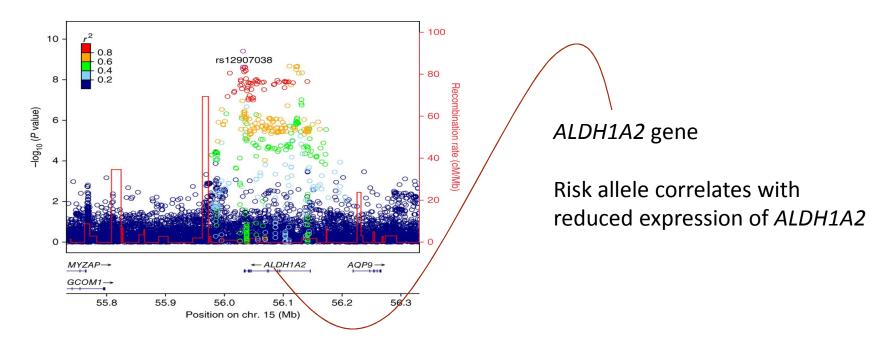
Allele freq = 0.02%

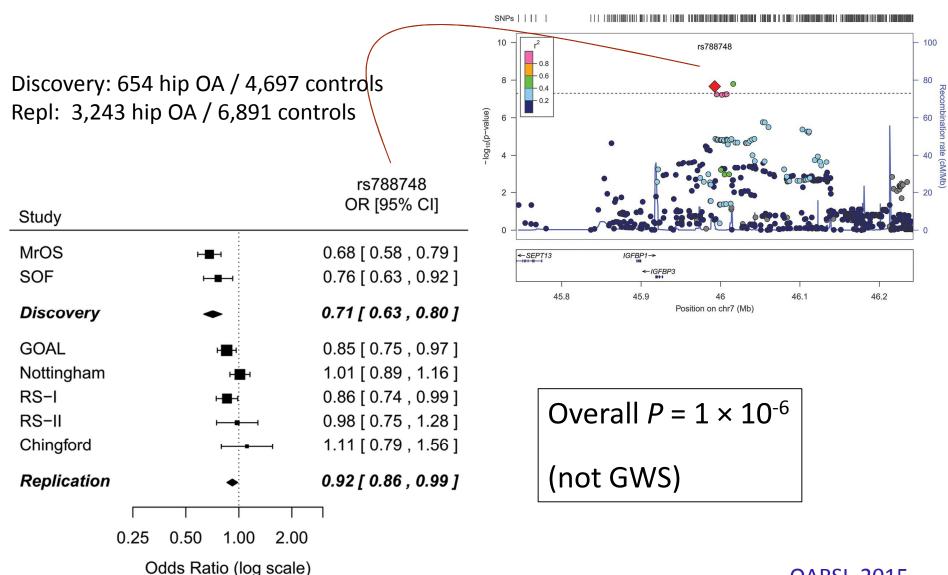
OR = 50,
$$P = 9.8 \times 10^{-10}$$

Present in other populations

– needs very large sample
sets to replicate association

Severe osteoarthritis of the hand associates with common variants within the *ALDH1A2* gene and with rare variants at 1p31




Table 1. Markers at 15q22, rs4238326-C (freq. 41%) and rs3204689-C (freq. 52%), associate with severe hand osteoarthritis

Hand OA phenotype	marker	Overall		
		OR (95% CI)	P value	N cases /controls
Severe thumbs and severe	rs4238326	1.44 (1.29-1.60)	8.6×10 ⁻¹¹	837 / 77325
fingers	rs3204689	1.46 (1.31-1.63)	1.1×10 ⁻¹¹	

EXTENDED REPORT

Genome-wide association and functional studies identify a role for *IGFBP3* in hip osteoarthritis

Ann Rheum Dis 2014;0,1-7

EXTENDED REPORT

Genome-wide association and functional studies identify a role for *IGFBP3* in hip osteoarthritis

Associates with lower levels of circulating IGFBP1

Knockdown and overexpression of IGFBP3 had measureable effects in chondrogenic models

Additional replication needed

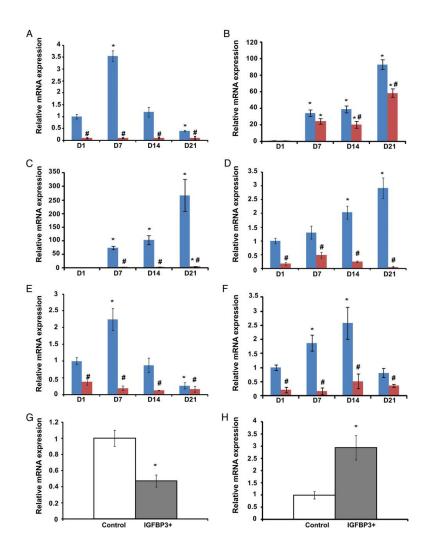


Figure 3 Impact of IGFBP3 knockdown and overexpression on markers of cartilage homeostasis.

RESEARCH ARTICLE

Open Access

A genome-wide association study of copy-number variation identifies putative loci associated with osteoarthritis in Koreans

Sanghoon Moon^{1†}, Bhumsuk Keam^{1,2†}, Mi Yeong Hwang¹, Young Lee¹, Suyeon Park^{1,4}, Ji Hee Oh¹, Yeon-Jung Kim¹, Heun-Sik Lee¹, Nam Hee Kim¹, Young Jin Kim¹, Dong-Hyun Kim³, Bok-Ghee Han¹, Bong-Jo Kim¹ and Juyoung Lee^{1*}

Test 1123 CNVs

204 hand OA, 167 knee OA, 467 controls

No association GWS ($< 4.5 \times 10^{-5}$)

No replication

Epigenetics and eQTL studies

Gee et al. BMC Medical Genetics 2014, 15:53 http://www.biomedcentral.com/1471-2350/15/53

RESEARCH ARTICLE

Open Access

Allelic expression analysis of the osteoarthritis susceptibility locus that maps to chromosome 3p21 reveals cis-acting eQTLs at GNL3 and SPCS1

Fiona Gee, Cla

OPEN ACCESS Freely available online

Cartilage; the

Yolande F. M. Ramos1,

Breggen¹, Nico Lakenb

Rob G. H. H. Nelissen4

1 Department of Molecular Epidemi Leiden-Rotterdam, The Netherlands,

University Medical Center, Leiden, Th

Abstract

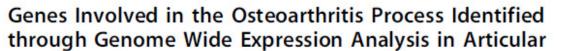
Background:

high linkage therefore ass tissues and w

Methods: We each allele of joint tissues of exact test wa

Results: GNL AEI = 1.04, p: of the OA-ass

Conclusions signal at chro


Keywords: 0

Background

Osteoarthritis joint characteris and often accor of other tissue logical studies major genetic susceptibility a cently, several have identified The UK arc(

significant loci

3p21.1, was ass

Basic and translational research

CONCISE REPORT

Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches

W den Hollander, ¹ Y F M Ramos, ¹ S D Bos, ^{1,2} N Bomer, ^{1,3} R van der Breggen, ¹ N Lakenberg, ¹ W J de Dijcker, ¹ Bouke J Duijnisveld, ⁴ P E Slagboom, ^{1,2,3} Rob G H H Nelissen, 4 I Meulenbelt 1,2

Abstract

Objective: Identify gene changing during the dise

Methods: Genome wide same joint using microar RT-gPCR and immunohis enrichment for specific p

Results: Among the 1711 we found significant en inflammatory genes such comparing preserved car high up-regulation of NG changes of 2-fold or hi expression. Most of these

Handling editor Tore K Kvien

▶ Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ annrheumdis-2014-205980).

¹Department of Molecular Epidemiology, LUMC, Leiden, The Netherlands ²Genomics Initiative, sponsored

ABSTRACT Objectives

landscape o affected kne Methods BeadChip a measured in pairs (14 kn a total joint

Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Cartilage

Matlock A. Jeffries, Madison Donica, Lyle W. Baker, Michael E. Stevenson, 4 Anand C. Annan, Mary Beth Humphrey, Judith A. James, and Amr H. Sawalha

Future of OA genetics research?

- Small portion of heritability explained
 - Polygenic
 - Heterogeneity of phenotype
- ➤ Larger sample size
- More detailed phenotyping
- Collaborations

Thank you